Мышечная ткань человека. Мышечная система человека

Гладкая мышечная ткань

Состоит из одноядерных клеток -- миоцитов веретеновидной формы длиной 20 -- 500 мкм. Их цитоплазма в световом микроскопе выглядит однородно, без поперечной исчерченности. Входит в состав стенок внутренних органов: кровеносных и лимфатических сосудов, мочевыводящих путей, пищеварительного тракта.(сокращение стенок желудка и кишечника)

Фибриллы сократительных белков (миофибриллы), расположенные в их цитоплазме, не имеют той жесткой структурной организации, которая характерна для рассмотренных выше двух других типов волокон. Гладкомышечные волокна имеют удлиненную веретеновидную форму с заостренными концами и центрально расположенным ядром. Гладкомышечные клетки могут образовывать во внутренних органах пласты или тяжи большой протяженности, объединенные соединительнотканными прослойками и пронизанные сосудами и нервами. Работа гладких мышц, как и сердечной, находится под контролем вегетативной нервной системы, и потому они являются непроизвольными. В функциональном отношении они отличаются от других типов мышц тем, что способны осуществлять относительно медленные движения и длительно поддерживать тоническое сокращение. Ритмические сокращения гладких мышц стенок желудка, кишок, мочевого или желчного пузыря обеспечивают перемещение содержимого этих полых органов. Яркий пример - перистальтические движения кишечника, способствующие проталкиванию пищевого комка. Функционирование сфинктеров полых органов непосредственно связано со способностью гладкой мускулатуры к длительным тоническим сокращениям; именно это позволяет надолго перекрывать выход содержимого таких органов, обеспечивая, например, накопление желчи в желчном пузыре. Тонус мышечного слоя стенок артерий определяет величину их просвета и тем самым уровень кровяного давления. При гипертонической болезни (гипертензии) повышенный тонус гладких мышц в стенках малых артерий и артериол приводит к значительному сужению их просвета, повышая сопротивление току крови. Аналогичная картина наблюдается при бронхиальной астме: в ответ на некоторые внешние или внутренние факторы резко возрастает тонус гладких мышц в стенках малых бронхов, вследствие чего просвет бронхов быстро сужается, нарушается выдох и возникает дыхательный спазм.

Мышечная система человека

В организме человека насчитывается примерно 300-330 парных поперечнополосатых мышц, которые в совокупности со скелетом образуют опорно-двигательный аппарат. Скелетная мышца состоит из множества мышечных волокон, расположенных параллельно друг другу. Эти многоядерные волокна порой достигают нескольких сантиметров в длину. В каждом мышечном волокне содержится большое количество упорядоченно расположенных миофибрилл, образованных специфическими белками, главными из которых являются актин и миозин. Мышечные волокна объединены в пучки, окруженные соединительной тканью. Множество таких пучков, в свою очередь, окружены как футляром волокнистой соединительной тканью. Соединительнотканные оболочки мышцы пронизаны кровеносными сосудами и снабжены нервами. В мышце различают мышечную и сухожильные части; утолщенную среднюю, активно сокращающуюся часть называют брюшком (телом), а два конца - головкой и хвостом. В зависимости от количества головок мышца бывает двуглавой, трехглавой и четырехглавой. У многих мышц на обоих концах имеются сухожилия, посредством которых они прикрепляются к костям. Сухожилия образованы плотной волокнистой соединительной тканью и способны выдерживать большие нагрузки при растяжении; прикрепляясь к костям, они плотно срастаются с надкостницей. У различных мышц они неодинаковы по ширине и длине и могут иметь форму шнура, ленты или широких плоских образований (например, у мышц, формирующих стенку брюшной полости), называемых сухожильным растяжением, или апоневрозом. В состав мышц входят также кровеносные сосуды и нервы.

Обычно мышца прикрепляется к двум различным костям. Функция ее сводится к тому, что при сокращении она или притягивает кости друг к другу, или удерживает их в определенном положении. При сокращении один конец мышцы остается неподвижным (фиксированная точка), а второй, прикрепленный к другой кости, меняет свое положение (подвижная точка). При выполнении различных движений фиксированная и подвижная точки могут меняться местами. Кости, соединенные суставами, при сокращении мышц действуют как механические рычаги. У животных (например, у лошадей) часть мышц прикрепляется к коже и образует широкий подкожный слой, играющий важную роль в защите от укусов насекомых. У людей мышцы этого типа сохранились лишь на голове и шее, особенно они хорошо развиты вокруг глаз и рта; это т.н. лицевые, или мимические, мышцы, с помощью которых выражается эмоциональное состояние человека. Сила мышцы, развиваемая в процессе сокращения или напряжения, зависит от анатомических, механических, физиологических и других факторов.

Названия присваивались мышцам на протяжении веков. Большей частью это описательные термины, отражающие размеры, положение, форму, строение, место прикрепления или функцию мышцы. Они до сих пор остаются в употреблении, например большая ромбовидная мышца (форма и размеры), квадратный пронатор (форма и функция), мышца, поднимающая лопатку (функция и прикрепление).

Размеры мышц варьируют от большой ягодичной мышцы, которая разгибает бедро, например при ходьбе по лестнице, до очень маленькой (длиной 3 мм) стремянной мышцы, регулирующей чувствительность уха к звуковым колебаниям.

Функции. Двигательная. Это одна из основных функций скелетных мышц. Мышцы способны развивать силу только при укорочении (т.е. могут только тянуть, а не толкать); следовательно, для того чтобы сместить кость, а затем вернуть ее в прежнее положение, необходимы по меньшей мере две мышцы или две группы мышц. Пары мышц, действующих таким образом, называются антагонистами. Классификация мышц по типам движений, производимых парами мышц-антагонистов, обширна; остановимся на одной из главных пар. Сгибатели сгибают конечность, притягивая два скелетных элемента друг к другу; разгибатели распрямляют конечность. Рассмотрим простейшее движение - сгибание руки в локте. В нем участвуют две группы мышц плеча: передняя (сгибатели) и задняя (разгибатели). Переднюю группу мышц составляют двуглавая мышца плеча (бицепс) и плечевая мышца, а заднюю - трехглавая мышца (трицепс) и малая локтевая мышца. Передняя, проходящая над локтевым суставом, группа при сгибании руки сокращается, а задняя, проходящая позади сустава, расслабляется. При выпрямлении руки укорачивается трицепс, а бицепс постепенно расслабляется, обеспечивая этим плавность движения.

Очень редко в движении участвует лишь одна пара мышц-антагонистов. Обычно каждое отдельное движение обеспечивается группами мышц; мышцы, действующие совместно и однонаправленно (например, группа сгибателей), называются синергистами.

Связующая. В отношении некоторых мышц не так важны движения, которые они производят, как те, которым они препятствуют. Так, группа из четырех мышц - малой круглой, подостной, надостной и подлопаточной - окружает плечевой сустав, удерживая верхний шаровидный конец (головку) плечевой кости в неглубокой суставной впадине. Мышцы стопы поддерживают свод стопы и являются еще одним примером мышц, сохраняющих взаиморасположение костей.

Функция поддержки. Брюшная полость образована преимущественно широкими плоскими мышцами, которые поддерживают внутренние органы. Передняя и боковая стенки полости покрыты тремя слоями мышц, а ее дно образовано у человека двумя мышцами: поднимающей задний проход и копчиковой (у четвероногих эти две мышцы обеспечивают движение хвоста).

Физиология. Физиология и биохимия мышечной деятельности - важная составляющая обмена веществ в организме.

Мы́шечные тка́ни (лат. textus muscularis - «ткань мышечная») - ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон. Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Основные морфологические признаки элементов мышечных тканей: удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы - миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков - актина и миозина - при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией. Запас источников энергии образуют гликоген и липиды. Миоглобин - белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

По происхождению и строению мышечные ткани значительно отличаются друг от друга, но их объединяет способность к сокращению, что обеспечивает двигательную функцию органов и организма в целом. Мышечные элементы вытянуты в длину и связаны либо с другими мышечными элементами, либо с опорными образованиями.

Разновидности мышечной ткани

Различают гладкую, поперечнополосатую мышечные ткани и мышечную ткань сердца.

Гладкая мышечная ткань.

Эта ткань образована из мезенхимы. Структурной единицей этой ткани является гладкомышечная клетка. Она имеет вытянутую веретенообразную форму и покрыта клеточной оболочкой. Эти клетки плотно прилегают друг к другу, образуя слои и группы, разделенные между собой рыхлой неоформленной соединительной тканью.

Ядро клетки имеет вытянутую форму и находится в центре. В цитоплазме расположены миофибриллы, они идут по периферии клетки вдоль ее оси. Состоят из тонких нитей и являются сократительным элементом мышцы.

Клетки располагаются в стенках сосудов и большинства внутренних полых органов (желудка, кишечника, матки, мочевого пузыря). Деятельность гладких мышц регулируется вегетативной нервной системой. Мышечные сокращения не подчиняются воле человека и поэтому гладкую мышечную ткань называют непроизвольной мускулатурой.

Поперечнополосатая мышечная ткань.

Эта ткань образовалась из миотом, производных мезодермы. Структурной единицей этой ткани является поперечнополосатое мышечное волокно. Это цилиндрическое тело, является симпластом. Оно покрыто оболочкой — сарколемой, а цитоплазма называется – саркоплазмой, в которой находятся многочисленные ядра и миофибриллы. Миофибриллы образуют пучок непрерывных волоконец идущих от одного конца волокна до другого параллельно его оси. Каждая миофибрилла состоит из дисков имеющих разный химический состав и под микроскопом кажущихся темными и светлыми. Однородные диски всех миофибрилл совпадают, и поэтому мышечное волокно представляется поперечнополосатым. Миофибриллы являются сократительным аппаратом мышечного волокна.

Из поперечнополосатой мышечной ткани построена вся скелетная мускулатура. Мускулатура является произвольной, т.к. ее сокращение может возникать под влиянием нейронов двигательной зоны коры больших полушарий.

Мышечная ткань сердца.

Миокард — средний слой сердца — построен из поперечнополосатых мышечных клеток (кардиомиоцитов). Имеются два вида клеток: типичные сократительные клетки и атипичные сердечные миоциты, составляющие проводящую систему сердца.

Типичные мышечные клетки выполняют сократительную функцию; они прямоугольной формы, в центре находятся 1-2 ядра, миофибриллы расположены по периферии. Между соседними миоцитами имеются вставочные диски. С их помощью миоциты собираются в мышечные волокна, разделенные между собой тонковолокнистой соединительной тканью. Между соседними мышечными волокнами проходят соединительные волокна, которые обеспечивают сокращение миокарда, как единого целого.

Проводящая система сердца образована мышечными волокнами, состоящими из атипичных мышечных клеток. Они более крупные, чем сократительные, богаче саркоплазмой, но беднее миофибриллами, которые часто перекрещиваются. Ядра крупнее и не всегда находятся в центре. Волокна проводящей системы окружены густым сплетением нервных волокон.

6. Мышечные ткани: функции, виды

Мышечные ткани . Двигательные процессы в организме человека и животного обусловлены сокращением мышечной ткани, обладающей сократительными структурами. К мышечной ткани относят неисчерченную (гладкую) и исчерченную (поперечнополосатую) мышечную ткань, включающую скелетную и сердечную .

Сократительными элементами являются мышечные фибриллы — миофибриллы (мышечные нити). Клетки мышечной ткани — миоциты . Мышечные ткани обладают возбудимостью и сократимостью.


Мышечная ткань (Стерки П., 1984).

а — продольное сечение скелетной мышцы; б — сердечная исчерченная мышечная ткань; в — неисчерченная (гладкая) мышечная ткань; 1 — сарколемма; 2 — поперечная исчерченность; 3 — ядра; 4 — вставочные диски; 5 — гладкомышечные клетки

Три вида мышечной ткани:

Гладкая мышечная ткань — состоит из веретеновидных клеток с продольной исчерченностью.

Особенности: длительно сокращается; долго находится в сокращённом состоянии; сокращается непроизвольно.

Образует стенки сосудов и кишечника.

Гладкие мышечные волокна .

1 — протоплазма; 2 — ядро

Поперечнополосатая скелетно-мышечная ткань — клетки цилиндрической формы с поперечнополосатой исчерченностью.

Особенности: сокращаются быстро; долго находятся в сокращённом состоянии; на сокращение тратится не много энергии; сокращается не произвольно, а по нашему желанию.

Образует скелетные мышцы, мышцы языка, глотку и части пищевода.

Поперечнополосатая сердечная мышечная ткань .

Особенности: похожа на поперечнополосатую скелетно-мышечную, но есть вставочные диски и анастомозы; сокращается произвольно, не зависимо от нашего сознания; есть атипичные клетки, которые образуют проводящую систему.

Образует мышцы сердца.


Поперечнополосатые мышечные волокна . Видны ядра и поперечная исчерченность.

Левое волокно разорвано; в месите разрыва видна сарколемма

12Следующая ⇒

Мышечная ткань: виды, особенности строения, месторасположение в организме

Мышечные ткани (textus musculares) – это специализированные ткани, которые обеспечивают движение (перемещение в пространстве) организма в целом, а также его частей и внутренних органов. Сокращение мышечных клеток или волокон осуществляется с помощью миофиламентов и специальных органелл – миофибрилл и является результатом взаимодействия молекул сократительных белков.

Согласно морфункциональной классификации, мышечные ткани делят на две группы:

I – поперечнополосатая (исчерченная) мышечная ткань – содержит постоянно комплексы актиновых и миозиновых миофиламентов – миофибриллы и имеет поперечную исчерченность;

II – гладкая (неисчерченная) мышечная ткань – состоит из клеток, которые постоянно содержат только актиновые миофиламенты и не имеют поперечной исчерченности.

Поперечнополосатая мышечная ткань

Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную .

Обе эти разновидности развиваются из мезодермы .

Поперечнополосатая скелетная мышечная ткань. Эта ткань образует скелетные мышцы, мышцы рта, глотки, частично пищевода, мышцы промежности и др.

В разных отделах она имеет свои особенности. Обладает высокой скоростью сокращения и быстрой утомляемостью. Этот тип сократительной деятельности называется тетаническим . Поперечнополосатая скелетная мышечная ткань сокращается произвольно в ответ на импульсы, идущие от коры больших полушарий головного мозга. Однако часть мышц (межреберные, диафрагма и др.) имеет не только произвольный характер сокращения, но и сокращается без участия сознания под влиянием импульсов из дыхательного центра, а мышцы глотки и пищевода сокращаются непроизвольно.

Структурной единицей является поперечнополосатое мышечное волокно – симпласт, цилиндрической формы с округлыми или заостренными концами, которыми волокна прилежат друг к другу или вплетаются в соединительную ткань сухожилий и фасций.

Сократительным аппаратом их являются поперечнополосатые миофибриллы , которые образуют пучок волоконец.

Это белковые нити, расположенные вдоль волокна. Длина их совпадает с длиной мышечного волокна. Миофибриллы состоят из темных и светлых участков – дисков . Так как темные и светлые диски всех миофибрилл одного мышечного волокна располагаются на одном уровне, образуется поперечная исчерченность; поэтому мышечное волокно называется поперечнополосатым.Темные диски в поляризованном свете имеют двойное лучепреломление и называются анизотропными, или А-дисками; светлые диски не имеют двойного лучепреломления и называются изотропными, или I-дисками.

Разная светопреломляющая способность дисков обусловлена их различным строением.

Светлые (I) диски однородны по составу: образованы только параллельно лежащими тонкими нитями – актиновыми миофиламентами , состоящими преимущественно из белка актина , а также тропонина и тропомиозина . Темные (А) диски неоднородны: образованы как толстыми миозиновыми миофиламентами , состоящими из белка миозина , так и частично проникающими между ними тонкими актиновыми миофиламентами .

В середине каждого I–диска проходит темная линия, которая называется Z–линией, или телофрагмой .

К ней прикрепляется один конец актиновых нитей. Участок миофибриллы между двумя телофрагмами называется саркомером . Саркомер – структурно-функциональная единица миофибриллы. В центре A-диска можно выделить светлую полосу, или зону Н , содержащую только толстые нити. В середине ее выделяется тонкая темная линия М, или мезофрагма . Таким образом, каждый саркомер содержит один А-диск и две половины I-диска .

Поперечнополосатая сердечная мышечная ткань. Образует миокард сердца.

Содержит, как и скелетная, миофибриллы, состоящие из темных и светлых дисков. Состоит из клеток – кардиомиоцитов , связанных между собой вставочными дисками.

При этом образуются цепочки кардиомиоцитов – функциональные мышечные волокна, которые анастомозируют между собой (переходят одно в другое), образуя сеть. Такая система соединений обеспечивает сокращение миокарда как единого целого. Сокращение сердечной мышцы непроизвольное , регулируется вегетативной нервной системой.

Среди кардиомиоцитов различают:

  • сократительные (рабочие) кардиомиоциты – содержат меньше миофибрилл, чем скелетные мышечные волокна, но очень много митохондрий, поэтому сокращаются с меньшей силой, но долго не утомляются; с помощью вставочных дисков осуществляют механическую и электрическую связь кардиомиоцитов;
  • атипичные (проводящие) кардиомиоциты – образуют проводящую систему сердца для формирования и проведения импульсов к сократительным кардиомиоцитам;
  • секреторные кардиомиоциты – располагаются в предсердиях, способны вырабатывать гормоноподобный пептид – натрий-уретический фактор , снижающий артериальное давление.

Гладкая мышечная ткань

Развивается из мезенхимы, располагается в стенке трубчатых органов (кишечник, мочеточник, мочевой пузырь, кровеносные сосуды), а также радужке и цилиарном (ресничном) теле глаза и мышцах, поднимающих волосы в коже.

Гладкая мышечная ткань имеет клеточное строение (гладкий миоцит) и обладает сократительным аппаратом в виде гладких миофибрилл .

Она сокращается медленно и способна длительно находиться в состоянии сокращения, потребляя относительно малое количество энергии и не утомляясь. Такой тип сократительной деятельности называется тоническим . К гладкой мышечной ткани подходят вегетативные нервы, и в отличие от скелетной мышечной ткани она не подчиняется сознанию, хотя и находится под контролем коры больших полушарий головного мозга.

Гладкомышечная клетка имеет веретенообразную форму и заостренные концы.

В ней есть ядро, цитоплазма (саркоплазма), органеллы и оболочка (сарколемма). Сократительные миофибриллы располагаются по периферии клеток вдоль ее оси. Эти клетки плотно прилежат друг к другу. Опорным аппаратом в гладкой мышечной ткани являются тонкие коллагеновые и эластические волокна, расположенные вокруг клеток и связывающие их между собой.

12Следующая ⇒

Похожая информация:

Поиск на сайте:

Образование

Функции мышечных тканей, виды и структура

Организм всех животных, в том числе и человека, состоит из четырех типов тканей: эпителиальной, нервной, соединительной и мышечной. О последней и пойдет речь в данной статье.

Разновидности мышечной ткани

Она бывает трех видов:

  • поперечно-полосатая;
  • гладкая;
  • сердечная.

Функции мышечных тканей разных видов несколько отличаются.

Да и строение тоже.

Где находятся мышечные ткани в организме человека?

Мышечные ткани разных видов занимают различное местоположение в организме животных и человека.

Так, из сердечной мускулатуры, как понятно из названия, построено сердце.

Из поперечно-полосатой мышечной ткани образуются скелетные мускулы.

Гладкие мышцы выстилают изнутри полости органов, которым необходимо сокращаться. Это, к примеру, кишечник, мочевой пузырь, матка, желудок и т.д.

Структура мышечной ткани разных видов различается. О ней поговорим подробнее дальше.

Видео по теме

Как устроена мышечная ткань?

Она состоит из больших по размеру клеток — миоцитов.

Они также еще называются волокнами. Клетки мышечной ткани обладают несколькими ядрами и большим количеством митохондрий — органоидов, отвечающих за выработку энергии.

Кроме того, строение мышечной ткани человека и животных предусматривает наличие небольшого количества межклеточного вещества, содержащего коллаген, который придает мышцам эластичность.

Давайте рассмотрим строение и функции мышечных тканей разных видов по отдельности.

Структура и роль гладкой мышечной ткани

Данная ткань контролируется вегетативной нервной системой.

Поэтому человек не может сокращать сознательно мышцы, построенные из гладкой ткани.

Формируется она из мезенхимы. Это разновидность эмбриональной соединительной ткани.

Сокращается данная ткань намного менее активно и быстро, чем поперечно-полосатая.

Гладкая ткань построена из миоцитов веретеновидной формы с заостренными концами.

Длина данных клеток может составлять от 100 до 500 микрометров, а толщина — около 10 микрометров. Клетки данной ткани являются одноядерными. Ядро расположено в центре миоцита. Кроме того, хорошо развиты такие органоиды, как агранулярная ЭПС и митохондрии. Также в клетках гладкой мышечной ткани присутствует большое количество включений из гликогена, которые представляют собой запасы питательных веществ.

Элементом, который обеспечивает сокращение мышечной ткани данного вида, являются миофиламенты.

Они могут быть построены из двух сократительных белков: актина и миозина. Диаметр миофиламентов, которые состоят из миозина, составляет 17 нанометров, а тех, которые построены из актина — 7 нанометров. Существуют также промежуточные миофиламенты, диаметр которых составляет 10 нанометров. Ориентация миофибрилл продольная.

В состав мышечной ткани данного вида также входит межклеточное вещество из коллагена, которое обеспечивает связь между отдельными миоцитами.

Функции мышечных тканей этого вида:

  • Сфинктерная.

    Заключается в том, что из гладких тканей устроены круговые мышцы, регулирующие переход содержимого из одного органа в другой или из одной части органа в другую.

  • Эвакуаторная. Заключается в том, что гладкие мышцы помогают организму выводить ненужные вещества, а также принимают участие в процессе родов.
  • Создание просвета сосудов.
  • Формирование связочного аппарата. Благодаря ему многие органы, такие как, например, почки, удерживаются на своем месте.

Теперь давайте рассмотрим следующий вид мышечной ткани.

Поперечно-полосатая

Она регулируется соматической нервной системой.

Поэтому человек может сознательно регулировать работу мышц данного вида. Из поперечно-полосатой ткани формируется скелетная мускулатура.

Данная ткань состоит из волокон. Это клетки, которые обладают множеством ядер, расположенных ближе к плазматической мембране. Кроме того, в них находится большое количество гликогеновых включений. Хорошо развиты такие органоиды, как митохондрии.

Они находятся вблизи сократительных элементов клетки. Все остальные органеллы локализуются неподалеку от ядер и развиты слабо.

Структурами, благодаря которым поперечно-полосатая ткань сокращается, являются миофибриллы.

Их диаметр составляет от одного до двух микрометров. Миофибриллы занимают большую часть клетки и расположены в ее центре. Ориентация миофибрилл продольная. Они состоят из светлых и темных дисков, которые чередуются, что и создает поперечную «полосатость» ткани.

Функции мышечных тканей данного вида:

  • Обеспечивают перемещение тела в пространстве.
  • Отвечают за передвижение частей тела друг относительно друга.
  • Способны к поддержанию позы организма.
  • Участвуют в процессе регуляции температуры: чем активнее сокращаются мышцы, тем выше температура.

    При замерзании поперечно-полосатые мышцы могут начать сокращаться непроизвольно. Этим и объясняется дрожь в теле.

  • Выполняют защитную функцию. Особенно это касается мышц брюшного пресса, которые защищают многие внутренние органы от механических повреждений.
  • Выступают в роли депо воды и солей.

Сердечная мышечная ткань

Данная ткань похожа одновременно и на поперечно-полосатую, и на гладкую. Как и гладкая, она регулируется вегетативной нервной системой.

Однако сокращается она так же активно, как и поперечно-полосатая.

Состоит она из клеток, называющихся кардиомиоцитами.

Функции мышечной ткани данного вида:

  • Она всего одна: обеспечение передвижения крови по организму.

Растительные и животные организмы различаются не только внешне, но и, конечно, внутренне. Однако самая главная отличительная черта образа жизни - это то, что животные способны активно передвигаться в пространстве. Обеспечивается это благодаря наличию в них особых тканей - мышечных. Их мы и рассмотрим подробнее дальше.

Животные ткани

В организме млекопитающих животных и человека выделяют 4 типа тканей, выстилающих все органы и системы, формирующих кровь и осуществляющих жизненно важные функции.

Совокупное сочетание всех перечисленных видов обеспечивает нормальное строение и функционирование живых существ.

Мышечная ткань: классификация

Особую роль в активной жизнедеятельности человека и животных играет специализированная структура. Ее название - мышечная ткань. Строение и функции ее весьма своеобразны и интересны.

Вообще данная ткань неоднородна и имеет свою классификацию. Следует рассмотреть ее подробнее. Существуют такие разновидности мышечных тканей, как:

  • гладкая;
  • поперечнополосатая;
  • сердечная.

Каждая из них имеет свое место локализации в организме и выполняет строго определенные функции.

Строение клетки мышечной ткани

Все три разновидности мышечных тканей имеют свои особенности строения. Однако можно выделить общие закономерности устройства клетки такой структуры.

Во-первых, она удлиненной формы (иногда достигает 14 см), то есть тянется вдоль всего мышечного органа. Во-вторых, она многоядерная, так как именно в этих клетках наиболее интенсивно протекают процессы синтеза белка, образования и распада молекул АТФ.

Также особенности строения мышечной ткани в том, что ее клетки содержат пучки миофибрилл, сформированных двумя белками - актином и миозином. Именно они обеспечивают главное свойство этой структуры - сократимость. Каждая нитевидная фибрилла включает в себя полосы, в микроскоп видимые как более светлые и темные. Ими являются белковые молекулы, образующие что-то вроде тяжей. Актин формирует светлые, а миозин - темные.

Особенности мышечной ткани любого типа в том, что их клетки (миоциты) образуют целые скопления - пучки волокон, или симпласты. Каждый из них изнутри выстлан целыми скоплениями фибрилл, в то время как сама мельчайшая структура состоит из названных выше белков. Если рассмотреть образно данный механизм строения, то получается, словно матрешка, - меньшее в большем, и так до самых пучков волокон, объединенных рыхлой соединительной тканью в общую структуру - определенный тип мышечной ткани.

Внутренняя среда клетки, то есть протопласт, содержит все те же самые структурные компоненты, что и любая другая в организме. Отличие - в количестве ядер и их ориентации не в центре волокна, а в периферической части. Также в том, что деление происходит не за счет генетического материала ядра, а благодаря особым клеткам, носящим название сателлитов. Они входят в состав оболочки миоцита и активно выполняют функцию регенерации - восстановления целостности ткани.

Свойства мышечных тканей

Как и любые другие структуры, данные разновидности тканей имеют свои особенности не только в строении, но и в выполняемых функциях. Основные свойства мышечных тканей, благодаря которым они могут это делать:

  • сокращение;
  • возбудимость;
  • проводимость;
  • лабильность.

Благодаря большому количеству кровеносных сосудов и капилляров, питающих мышцы, они могут быстро воспринимать сигнальные импульсы. Данное свойство называется возбудимостью.

Также особенности строения мышечной ткани позволяют ей быстро реагировать на любые раздражения, посылая ответный импульс в кору головного и спинной мозга. Так проявляется свойство проводимости. Это очень важно, так как способность вовремя отреагировать на угрожающие воздействия (химического, механического, физического характера) - важное условие нормальной безопасной жизнедеятельности любого организма.

Мышечная ткань, строение и функции, которые она выполняет - все это в целом сводится к главному свойству, сократимости. Оно подразумевает произвольное (контролируемое) или непроизвольное (без осознанного управления) уменьшение или увеличение длины миоцита. Происходит это благодаря работе белковых миофибрилл (актиновых и миозиновых нитей). Они могут растягиваться и истончаться почти до невидимости, а затем снова быстро восстанавливать свою структуру.

В этом состоят особенности мышечной ткани любого типа. Так построена работа сердца человека и животных, их сосудов, глазных мышц, вращающих яблоко. Именно данное свойство обеспечивает способность к активному движению, перемещению в пространстве. Что бы сумел сделать человек, если бы его мышцы не могли сокращаться? Ничего. Поднять и опустить руку, подпрыгнуть, присесть, танцевать и бегать, выполнять различные физические упражнения - все это помогают делать только мышцы. А именно миофибриллы актиновой и миозиновой природы, образующие миоциты ткани.

Последнее свойство, о котором необходимо упомянуть, это лабильность. Она подразумевает способность ткани быстро восстанавливаться после возбуждения, приходить в абсолютную работоспособность. Лучше миоцитов это могут делать только аксоны -

Строение мышечных тканей, обладание перечисленными свойствами, - главные причины выполнения ими ряда важнейших функций в организмах животных и человека.

Гладкая ткань

Одна из разновидностей мышечных. Имеет мезенхимное происхождение. Устроена отлично от других. Миоциты небольшие, слегка вытянутые, напоминают утолщенные в центре волокна. Средний размер клетки составляет около 0,5 мм в длину и 10 мкм в диаметре.

Протопласт отличается отсутствием сарколеммы. Ядро одно, а вот митохондрий много. Локализация генетического материала, отделенного от цитоплазмы кариолеммой, - в центре клетки. Плазматическая мембрана устроена достаточно просто, сложных белков и липидов не наблюдается. Рядом с митохондриями и по всей цитоплазме разбросаны миофибрилльные кольца, содержащие актин и миозин в небольших количествах, однако достаточных для сокращения ткани. Эндоплазматическая сеть и комплекс Гольджи несколько упрощены и редуцированы по сравнению с другими клетками.

Гладкая мышечная ткань образована пучками миоцитов (веретенообразных клеток) описанного строения, иннервируется эфферентными и афферентными волокнами. Подчиняется управлению вегетативной нервной системы, то есть сокращается, возбуждается без осознанного контроля организма.

В некоторых органах гладкая мускулатура сформирована благодаря индивидуальным одиночным клеткам с особенной иннервацией. Хотя такое явление достаточно редко. В целом можно выделить два основных типа клеток гладкой мускулатуры:


Первая группа клеток малодифференцированна, содержит множество митохондрий, хорошо выраженный аппарат Гольджи. В цитоплазме явно прослеживаются пучки сократительных миофибрилл и микрофиламентов.

Вторая группа миоцитов специализируется на синтезе полисахаридов и сложных комбинативных высокомолекулярных веществах, из которых в дальнейшем строятся коллаген и эластин. Ими же вырабатывается значительная часть межклеточного вещества.

Места локализации в организме

Гладкая мышечная ткань, строение и функции, которые она выполняет, позволяют ей концентрироваться в разных органах в неодинаковом количестве. Так как иннервация не подчиняется контролю со стороны направленной деятельности человека (его сознания), то и места локализации будут соответствующие. Такие, как:

  • стенки кровеносных сосудов и вен;
  • большая часть внутренних органов;
  • кожа;
  • глазное яблоко и прочие структуры.

В связи с этим характер активности гладкой мышечной ткани - быстродействующий низкий.

Выполняемые функции

Строение мышечных тканей накладывает прямой отпечаток на выполняемые ими функции. Так, гладкая мускулатура нужна для следующих операций:


Желчный пузырь, места впадения желудка в кишку, мочевой пузырь, лимфатические и артериальные сосуды, вены и многие другиеорганы - все они способны нормально функционировать только благодаря свойствам гладкой мускулатуры. Управление, еще раз оговоримся, строго автономное.

Поперечно-полосатая мышечная ткань

Рассмотренные выше не подчиняются управлению со стороны сознания человека и не отвечают за его движение. Это прерогатива следующего вида волокон - поперечно-полосатых.

Сначала разберемся, за что им было дано такое название. При рассмотрении в микроскоп можно увидеть, что данные структуры имеют четко выраженную исчерченность поперек определенными тяжами - нитями белка актина и миозина, образующими миофибриллы. Это и послужило причиной для такого названия ткани.

Поперечно-мышечная ткань имеет миоциты, содержащие множество ядер и представляющие собой результат слияния нескольких клеточных структур. Такое явление обозначается терминами "симпласт" или "синцитий". Внешний вид волокон представлен длинными, вытянутыми цилиндрическими клетками, плотно соединенными между собой общим межклеточным веществом. Кстати, существует определенная ткань, которая образует эту среду для сочленения всех миоцитов. Ею обладает и гладкая мышечная. Соединительная ткань - основа которая может быть как плотной, так и рыхлой. Она же формирует целый ряд сухожилий, при помощи которых поперечно-полосатая скелетная мускулатура крепится к костям.

Миоциты рассматриваемой ткани, кроме значительного размера, имеют еще несколько особенностей:

  • саркоплазма клеток содержит большое количество хорошо различимых микрофиламентов и миофибрилл (актин и миозин в основе);
  • данные структуры объединяются в большие группы - мышечные волокна, которые, в свою очередь, формируют непосредственно скелетные мышцы разных групп;
  • имеется множество ядер, хорошо выраженный ретикулюм и аппарат Гольджи;
  • хорошо развиты многочисленные митохондрии;
  • иннервация осуществляется под контролем соматической нервной системы, то есть осознанно;
  • утомляемость волокон высокая, однако и работоспособность тоже;
  • лабильность выше среднего уровня, быстрое восстановление после рефракции.

В теле животных и человека поперечнополосатая мускулатура имеет красный цвет. Это объясняется присутствием в волокнах миоглобина - специализированного белка. Каждый миоцит покрыт снаружи практически невидимой прозрачной оболочкой - сарколеммой.

В молодом возрасте животных и человека содержат больше плотной соединительной ткани между миоцитами. С течением времени и старением она заменяется на рыхлую и жировую, поэтому мышцы становятся дряблыми и слабыми. В целом скелетная мускулатура занимает до 75% от общей массы. Именно она составляет мясо животных, птиц, рыб, которое человек употребляет в пищу. Питательная ценность очень высокая из-за большого содержания различных белковых соединений.

Разновидностью поперечно-полосатой мускулатуры, помимо скелетной, является сердечная. Особенности ее строения выражаются в присутствии двух типов клеток: обычных миоцитов и кардиомиоцитов. Обычные имеют такое же строение, как и скелетные. Отвечают за автономное сокращение сердца и его сосудов. А вот кардиомиоциты - особые элементы. В них незначительное количество миофибрилл, а значит, актина и миозина. Это говорит о низкой способности к сокращению. Но их задача не в этом. Главная роль - выполнение функции проведения возбудимости по сердцу, осуществление ритмической автоматии.

Сердечная мышечная ткань формируется за счет многократного ветвления входящих в ее состав миоцитов и последующего объединения в общую структуру этих веточек. Еще одно отличие от поперечно-полосатой скелетной мускулатуры - в том, что сердечные клетки содержат ядра в своей центральной части. Миофибриллярные участки локализованы по периферии.

Какие органы образует?

Вся скелетная мускулатура организма - это поперечно-полосатая мышечная ткань. Таблица, отражающая места локализации данной ткани в организме, приведена ниже.

Значение для организма

Роль, которую исполняет поперечно-полосатая мускулатура, переоценить сложно. Ведь именно она отвечает за самое важное отличительное свойство растений и животных - способность к активному передвижению. Человек может совершать массу самых сложных и простых манипуляций, и все они будут зависеть от работы скелетных мышц. Многие люди занимаются тщательными тренировками своей мускулатуры, добиваются в этом большого успеха благодаря свойствам мышечных тканей.

Рассмотрим, какие еще функции выполняет поперечно-полосатая мускулатура в теле человека и животных.

  1. Отвечает за сложные мимические сокращения, выражение эмоций, внешние проявления сложных чувств.
  2. Поддерживает положение тела в пространстве.
  3. Выполняет функцию защиты органов брюшной полости (от механических воздействий).
  4. Сердечная мускулатура обеспечивает ритмические сокращения сердца.
  5. Скелетные мышцы участвуют в актах глотания, формируют голосовые связки.
  6. Регулируют движения языка.

Таким образом, можно сделать следующий вывод: мышечные ткани - важные структурные элементы любого животного организма, наделяющие его определенными уникальными способностями. Свойства и строение разных типов мускулатуры обеспечивают жизненно необходимые функции. В основе строения любой мышцы лежит миоцит - волокно, образованное из белковых нитей актина и миозина.

Выполняют очень важную функцию в организмах живых существ - формируют и выстилают все органы и их системы. Особое значение среди них имеет именно мышечная, так как ее значение в формировании наружной и внутренней полости всех структурных частей тела приоритетная. В данной статье рассмотрим, что собой представляет гладкая мышечная ткань, особенности строения ее, свойства.

Разновидности данных тканей

В составе животного организма имеется немного типов мышц:

  • поперечно полосатая;
  • гладкая мышечная ткань.

Обе они имеют свои характеристические черты строения, выполняемые функции и проявляемые свойства. Кроме того, их легко различить между собой. Ведь и та и другая имеют свой неповторимый рисунок, формирующийся благодаря входящим в состав клеток белковым компонентам.

Поперечнополосатая также подразделяется на два основных вида:

  • скелетная;
  • сердечная.

Само название отражает основные области расположения в организме. Ее функции чрезвычайно важны, ведь именно эта мускулатура обеспечивает сокращение сердца, движение конечностей и всех остальных подвижных частей тела. Однако, и гладкая мускулатура не менее значима. В чем заключаются ее особенности, рассмотрим дальше.

В целом можно заметить, что только слаженная работа, которую выполняет гладкая и поперечнополосатая мышечные ткани, позволяет всему организму успешно функционировать. Поэтому определить более или менее значимую из них невозможно.

Гладкая особенности строения

Основные необычные черты рассматриваемой структуры заключаются в строении и составе ее клеток - миоцитов. Как и любая другая, эта ткань образована группой клеток, схожих по строению, свойствам, составу и выполняемым функциям. Общие особенности строения можно обозначить в нескольких пунктах.

  1. Каждая клетка окружена плотным сплетением соединительнотканных волокон, что выглядит, словно капсула.
  2. Каждая структурная единица плотно прилегает к другой, межклетники практически отсутствуют. Это позволяет всей ткани быть плотноупакованной, структурированной и прочной.
  3. В отличие от поперечнополосатой коллеги, данная структура может включать в свой состав неодинаковые по форме клетки.

Это, конечно, не вся характеристика, которую имеет Особенности строения, как уже оговаривалось, заключаются именно в самих миоцитах, их функционировании и составе. Поэтому ниже этот вопрос будет рассмотрен подробнее.

Миоциты гладкой мускулатуры

Миоциты имеют разную форму. В зависимости от локализации в том или ином органе, они могут быть:

  • овальными;
  • веретеновидными удлиненными;
  • округлыми;
  • отростчатыми.

Однако в любом случае общий состав их сходен. Они содержат такие органоиды, как:

  • хорошо выраженные и функционирующие митохондрии;
  • комплекс Гольджи;
  • ядро, чаще вытянутое по форме;
  • эндоплазматический ретикулум;
  • лизосомы.

Естественно, и цитоплазма с обычными включениями также присутствует. Интересен факт, что миоциты гладкой мускулатуры снаружи покрыты не только плазмолеммой, но и мембраной (базальной). Это обеспечивает им дополнительную возможность для контакта друг с другом.

Эти места соприкосновения составляют особенности гладкой мышечной ткани. Места контактов именуются нексусами. Именно через них, а также через поры, которые в этих местах имеются в мембране, происходит передача импульсов между клетками, обмен информацией, молекулами воды и другими соединениями.

Есть еще одна необычная черта, которую имеет гладкая мышечная ткань. Особенности строения ее миоцитов в том, что не все из них имеют нервные окончания. Поэтому настолько важны нексусы. Чтобы ни одна клетка не осталась без иннервации, и импульс мог передаться через соседнюю структуру по ткани.

Существует два основных типа миоцитов.

  1. Секреторные. Их основная функция заключается в выработке и накоплении гранул гликогена, сохранении множества митохондрий, полисом и рибосомальных единиц. Свое название эти структуры получили из-за белков, содержащиеся в них. Это актиновые филаменты и сократительные фибриновые нити. Данные клетки чаще всего локализуются по периферии ткани.
  2. Гладкие Имеют вид веретеновидных удлиненных структур, содержащих овальное ядро, смещенное к середине клетки. Другое название лейомиоциты. Отличаются тем, что имеют более крупные размеры. Некоторые частицы маточного органа достигают 500 мкм! Это достаточно значительная цифра на фоне всех остальных клеток в организме, больше разве что яйцеклетка.

Функция гладких миоцитов состоит также в том, что они синтезируют следующие соединения:

  • гликопротеиды;
  • проколлаген;
  • эластаны;
  • межклеточное вещество;
  • протеогликаны.

Совместное взаимодействие и слаженная работа обозначенных типов миоцитов, а также их организация обеспечивают строение гладкой мышечной ткани.

Происхождение данной мускулатуры

Источник образования данного типа мускулатуры в организме не один. выделяют три основных варианта происхождения. Именно этим и объясняется различия, которые имеет строение гладкой мышечной ткани.

  1. Мезенхимное происхождение. такое имеет большая часть гладких волокон. Именно из мезенхими образуются практически все ткани, выстилающие внутреннюю часть полых органов.
  2. Эпидермальное происхождение. Само название говорит о местах локализации - это все кожные железы и их протоки. Именно они образованы гладкими волокнами, имеющими такой вариант появления. Потовые, слюнные, молочные, слезные - все эти железы выделяют свой секрет, благодаря раздражению клеток миоэпителиоцитов - структурных частичек рассматриваемого органа.
  3. Нейральное происхождение. Такие волокна локализуются в одном определенном месте - это радужка, одна из оболочек глаза. Сокращение или расширение зрачка иннервируется и управляется именно этими клетками гладкой мускулатуры.

Несмотря на разное происхождение, внутренний состав и выполняемые свойства всех в рассматриваемой ткани остаются примерно одинаковыми.

Основные свойства данной ткани

Свойства гладкой мышечной ткани соответствуют таковым и для поперечнополосатой. В этом они едины. Это:

  • проводимость;
  • возбудимость;
  • лабильность;
  • сократимость.

При этом существует и одна достаточно специфичная особенность. Если поперечнополосатая скелетная мускулатура способна быстро сокращаться (это хорошо иллюстрирует дрожь в теле человека), то гладкая может долго удерживаться в сжатом состоянии. Кроме того, ее деятельность не подчиняется воле и разуму человека. Так как иннервирует ее

Очень важным свойством является способность к длительному медленному растяжению (сокращению) и такому же расслаблению. Так, на этом основана работа мочевого пузыря. Под действием биологической жидкости (ее наполнением) он способен растягиваться, а затем сокращаться. Стенки его выстланы именно гладкой мускулатурой.

Белки клеток

Миоциты рассматриваемой ткани содержат много разных соединений. Однако наиболее важными из них, обеспечивающими выполнение функций сокращения и расслабления, являются именно белковые молекулы. Из них здесь содержатся:

  • миозиновые нити;
  • актин;
  • небулин;
  • коннектин;
  • тропомиозин.

Эти компоненты обычно располагаются в цитоплазме клеток изолированно друг от друга, не образуя скоплений. Однако в некоторых органах у животных формируются пучки или тяжи, именуемые миофибриллами.

Расположение в ткани этих пучков в основном продольное. Причем как миозиновых волокон, так и актиновых. В результате образуется целая сеть, в которой концы одних сплетаются с краями других белковых молекул. Это важно для быстрого и правильного сокращения всей ткани.

Само сокращение происходит так: в составе внутренней среды клетки есть пиноцитозные пузырьки, в которых обязательно содержатся ионы кальция. Когда поступает нервный импульс, говорящий о необходимости сокращения, этот пузырек подходит к фибрилле. В результате ион кальция раздражает актин и он продвигается глубже между нитями миозина. Это приводит к затрагиванию плазмалеммы и в результате миоцит сокращается.

Гладкая мышечная ткань: рисунок

Если говорить о поперечнополосатой ткани, то ее легко узнать по исчерченности. Но вот что касается рассматриваемой нами структуры, то такого не происходит. Почему гладкая мышечная ткань рисунок имеет совсем иной, нежели близкая ей соседка? Это объясняется наличием и расположением белковых компонентов в миоцитах. В составе гладкой мускулатуры нити миофибрилл разной природы локализуются хаотично, без определенного упорядоченного состояния.

Именно поэтому рисунок ткани просто отсутствует. В поперечнополосатой нити актина последовательно сменяются поперечным миозином. В результате возникает рисунок - исчерченность, благодаря которой ткань и получила свое название.

Под микроскопом гладкая ткань выглядит очень ровной и упорядоченной, благодаря плотно прилегающим друг к другу продольно расположенным вытянутым миоцитам.

Области пространственного расположения в организме

Гладкая мышечная ткань образует достаточно большое количество важных внутренних органов в животном теле. Так, ей образованы:

  • кишечник;
  • половые органы;
  • кровеносные сосуды всех типов;
  • железы;
  • органы выделительной системы;
  • дыхательные пути;
  • части зрительного анализатора;
  • органы пищеварительной системы.

Очевидно, что места локализации рассматриваемой ткани крайне разнообразны и важны. Кроме того, следует заметить, что такая мускулатура формирует в основном те органы, которые подвержены автоматии в управлении.

Способы восстановления

Гладкая мышечная ткань образует достаточно важные структуры, что иметь способность к регенерации. Поэтому для нее характерны два основных пути восстановления при повреждениях различного рода.

  1. Митотическое деление миоцитов до образования нужного количества ткани. Самый распространенный простой и быстрый способ регенерации. Так происходит восстановление внутренней части любого органа, образованного гладкой мускулатурой.
  2. Миофибробласты способны трансформироваться в миоциты гладкой ткани при необходимости. Это более сложный и редко встречаемый путь регенерации данной ткани.

Иннервация гладкой мускулатуры

Гладкая свои выполняет независимо от желания или нежелания живого существа. Это происходит оттого, что ее иннервацию осуществляет вегетативная нервная система, а также отростки нервов ганглиев (спинальных).

Примером этому и доказательством может служить сокращение или увеличение размеров желудка, печени, селезенки, растяжение и сокращение мочевого пузыря.

Функции гладкой мышечной ткани

Каково же значение этой структуры? Зачем нужна ее следующие:

  • длительное сокращение стенок органов;
  • выработка секретов;
  • способность отвечать на раздражения и воздействия возбудимостью.

Гладкая мышечная ткань очень широко распространена в организме: она входит в состав стенки полых (трубчатых) внутренних органов - бронхов, желудка, кишки, матки, маточных труб, мочеточников, мочевого пузыря (висцеральная гладкая мышечная ткань), а также сосудов (васкулярная гладкая мышечная ткань). Васкулярная гладкая мышечная ткань отличается от висцеральной некоторыми структурными, биохимическими и функциональными особенностями, чувствительностью к действию ряда гормонов, нейромедиаторов и фармакологических препаратов. Гладкая мышечная ткань встречается также в коже, где она образует мышцы, поднимающие волос, а также в капсулах и трабекулах некоторых органов (селезенка, яичко) (рис. 7.16).

Рис. 7.16. На микрофотографии (х480)изображен продольный срез гладкой мышечной ткани. Мышечная клетка имеет веретенообразную форму, в центре расположено ядро. Концы клеток вклиниваются между срединными частями соседних клеток, благодаря чему создается связь клеток в пласте. Между гладкомышечными клетками располагается соединительная ткань.

Движения, осуществляемые гладкой мышечной тканью, – сравнительно медленные и продолжительные, она обеспечивает также длительные тонические сокращения. Ее сокращения вызывают изменения величины просвета трубчатых органов и лежат в основе их перистальтики. Благодаря сократительной активности этой ткани обеспечивается деятельность органов пищеварительного тракта, регуляция дыхания, крово- и лимфотока, выделение мочи, транспорт половых клеток и др.

ФУНКЦИОНАЛЬНАЯ МОРФОЛОГИЯ ГЛАДКОЙ МЫШЕЧНОЙ ТКАНИ

Структурно-функциональной единицей гладкой мышечной ткани мезенхимного типа служит гладкий миоцит (гладкая мышечная клетка) (рис. 7.16; 7.17).

ГЛАДКИЕ МИОЦИТЫ

Гладкие миоциты - одноядерные клетки преимущественно веретеновидной формы, не обладающие поперечной исчерченностью и образующие многочисленные соединения друг с другом (рис. 7.16, 7.17). Длина клеток в состоянии расслабления варьирует в пределах 20-1000 мкм (составляя, в среднем, около 200 мкм), их толщина колеблется от 2 до 20 мкм. При резком сокращении длина миоцитов может уменьшаться до 20% начальной. Наиболее крупные клетки характерны для стенки внутренних органов (максимальной длины 500-1000 мкм достигают миоциты матки при беременности), самые мелкие (длиной около 20 мкм) располагаются в стенке сосудов. Гладкие миоциты окружены сарколеммой, которая снаружи покрыта базальной мембраной, содержат одно ядро и саркоплазму, в которой располагаются органеллы и включения.

Рис. 7.17. Гладкая мышечная ткань. Сверху показаны изолированные гладкие миоциты (ГМЦ), внизу - их пласт, образованный двумя слоями, в которых клетки ориентированы во взаимно перпендикулярных плоскостях (ГМЦ видны на продольном и поперечном разрезах). КРС - кровеносный сосуд в прослойке рыхлой волокнистой соединительной ткани.

Саркоплазма гладких миоцитов содержит умеренно развитые органеллы общего значения, которые располагаются вместе с включениями в конусовидных участках у полюсов ядра. Периферическая ее часть занята миофиламентами. В саркоплазме выделяют следующие аппараты: 1) сократительный, 2) передачи возбуждения (с сарколеммы на сократительный аппарат), 3) опорный, 4) энергетический, 5) синтетический, 6) лизосомальный (аппарат внутриклеточного переваривания).

Сократительный аппарат гладких миоцитов представлен тонкими (актиновыми) и толстыми (миозиновыми) филаментами, которые, однако, в отличие от поперечнополосатых мышечных тканей, не формируют миофибрилл.

Тонкие (актиновые) миофиламенты образованы особым набором изоформ актина, свойственным гладким миоцитам, причем помимо мышечного актина в них обнаруживается и немышечный (цитоплазмати-ческий) актин. Тонкие филаменты преобладают над толстыми по количеству и занимаемому объему. Они более многочисленны, чем в поперечнополосатых мышечных тканях и располагаются в саркоплазме пучками по 10-20 филаментов, лежащими параллельно или под углом к длинной оси клетки и образующими сетевидные структуры.

Толстые (миозиновые филаменты), в отличие от таковых в поперечнополосатой мышечной ткани, обладают различной длиной (при этом они значительно короче тонких нитей), менее стабильны, не содержат центральной гладкой части, поскольку покрыты миозиновыми головками по всей длине. Это обеспечивает более значительное перекрытие тонких и толстых филаментов, а, следовательно, и большую силу сокращения. Относительное содержание миозиновых филаментов в гладких миоцитах ниже, чем в миофибриллах поперечнополосатой мышечной ткани; на один миозиновый филамент в гладких миоцитах приходится не менее 12 актиновых. По мнению некоторых авторов, миозиновые филаменты гладких миоцитов обладают значительной лабильностью и окончательно собираются непосредственно перед сокращением, распадаясь после него.

Сокращение гладких миоцитов обеспечивается взаимодействием актиновых и миозиновых миофиламентов и развивается в соответствии с моделью скользящих нитей. Оно происходит более медленно и длится дольше, чем в скелетной мышце, что обусловлено более низкой скоростью гидролиза АТФ в гладких миоцитах.

Роль Са 2+ в сокращении гладких миоцитов. Как и в поперечнополосатых мышечных тканях, сокращение гладких миоцитов индуцируется притоком Са 2+ в саркоплазму, который в этих клетках выделяется саркоплазматшеской сетью и кавеолами (см. ниже), а также вследствие увеличения проницаемости сарколеммы для данных ионов.

Образование мостиков типа "щеколды" (latch-bridges в англоязычной литературе) является особенностью сократительного аппарата гладких миоцитов: часть миозиновых мостиков после дефосфорилирования не отсоединяется от актина, а остается с ним связанной. Благодаря этому гладкая мышца способна обеспечивать длительное поддержание тонуса без существенных дополнительных энергетических затрат (так как указанные мостики обладают очень медленной циклической активностью).

Опорный аппарат гладкого миоцита представлен его сарколеммой, базальной мембраной, системой элементов цитоскелета и связанных с ними плотных телец.

Сарколемма каждого миоцита окружена базальной мембраной, в которую вплетаются тонкие ретикулярные, коллагеновые и эластические волокна; коллагеновые фибриллы, прикрепляющиеся к сарколемме в области ее углублений по краям миоцитов, воспринимают усилие, развивающееся при сокращении клеток.

Плотные тельца, связанные с сарколеммой, некоторые авторы называют плотными пластинками и считают структурами, не идентичными расположенным в саркоплазме (поскольку они различаются по химическому составу). Более того, в соответствии с современными представлениями, плотные пластинки лишь на срезах кажутся отдельными небольшими образованиями, в реальности же они имеют вид длинных непрерывных "ребер", идущих параллельно друг другу по внутренней поверхности сарколеммы вдоль длинной оси миоцита.

Плотные пластинки включают периферический и глубокий слои. Первый прилежит к сарколемме и образован филаментами немышечного актина, связанными с трансмембранными белками интегринами по средством комплекса адгезивных белков (винкулина, талина, тетина и др.). В глубоком слое филаменты мышечного актина прикреплены к молекулам немышечного актина связующими белками (например, филамином).

Аппарат передачи возбуждения (с сарколеммы на сократительный аппарат) в гладких миоцитах изучен недостаточно. К нему относят саркоплазматическую сеть, которая в этих клетках рудиментарна и состоит из системы мелких цистерн и пузырьков, а также особые мембранные структуры – кавеолы. Т-трубочки отсутствуют.

Кавеолы - колбовидные впячивания поверхности сарколеммы диаметром около 70 нм (с более узкой "шейкой"), располженные перпендикулярно длинной оси клетки. Кавеолы открыты в сторону межклеточного пространства, часто располагаются рядами вдоль длинной оси миоцита (занимая промежутки между плотными пластинками), иногда уходят вглубь его саркоплазмы в виде ветвящихся цепочек. Они очень многочисленны (до нескольких сотен тысяч в одной клетке); площадь их суммарной поверхности составляет около 1/3 площади поверхности сарколеммы. Число кавеол не меняется при сокращении, расслаблении или растяжении клетки, они, по-видимому, не участвуют в процессах эндоцитоза. Кавеолы содержат высокие концентрации кальция, а в их мембране имеются белки, обеспечивающие транспорт кальция в саркоплазму и из нее. Местами они контактируют с элементами саркоплазматической сети. Кавеолы, по-видимому, не только гомологичны системе Т-трубочек поперечнополосатых мышечных тканей, но и выполняют ряд функций, свойственных саркоплазматической сети (рис. 7.18).

Рис. 7.18. Электроннограмма гладкой мышечной ткани (х21.000). Заметны детали стоения плазматической и внутриклеточной мембран. Плазматическая мембрана имеет внутриклеточные впячивания – кавеолы (С). Внутриклеточные мембраны: – элементы ЭПР (SR), комплекс Гольджи. Везикулярные структуры S, располагаются вблизи плазмолеммы, часто соединяются с кавеолами. Это структуры, аналогичные по-видимому СПР скелетных мышц, N – межклеточные контакты, N – нексус, J – адгезивный контакт, D – электронноплотные гранулы.

Энергетический аппарат гладких миоцитов представлен митохондриями, а также включениями гранул гликогена и мелкими липидными каплями преимущественно у полюсов ядра

Синтетический аппарат гладких миоцитов представлен элементами грЭПС и комплексом Гольджи, лежащими у полюсов ядра, а также свободными рибосомами, которые располагаются, наряду с этими участками, по всей саркоплазме. Благодаря выраженной синтетической активности гладкие миоциты продуцируют и выделяют (подобно фибробластам) коллагены, эластин и компоненты аморфного вещества, ряд факторов роста и цитокинов.

Лизосомальный аппарат (аппарат внутриклеточного переваривания) гладких миоцитов развит сравнительно слабо.

Фитнес детали